
2016 James S. Rickards Fall Invitational Calculus Team Round

QUESTION 1

Suppose f(x) = xe−x
2+3.

Let:

A = the sum of the critical values of f(x)

(B,C) ∪ (D,∞) = the interval where f(x) is concave up

(E,F ) = the coordinate of the absolute maximum of f(x)

Find AC +BD + E2 + ln (
√

2F ).
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QUESTION 2

Given the functions f(x) = 3x3 + 4x2 − 10 and g(x) = 7x2 − 6x− 5, evaluate the following:

A = f(g(1))

B =
d

dx
(f(g(x)) at x = 2

C =
d

dx
(g(f(x)) at x = 2

D =
d

dx

f(x)

g(x)
at x = 2

Find A+B + C + 121D.
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QUESTION 3

Let:

A =

∫ 2π

3

0

sin (x) dx

B =

∫ 3π

2

π

sin3 (x) cos6 (x) dx

C =

∫ π

π

3

sin (5x) cos (4x) dx

D =

∫ π

2

0

esin(x) cos(x) dx

Find ABC · ln(D + 1).
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QUESTION 4

Given that f(x) = 1 + x2, let:

A = the left hand Riemann sum using four equal sub intervals over the domain [−1, 1]

B = the right hand Riemann sum using four equal sub intervals over the domain [−1, 1]

C = the midpoint Riemann sum using four equal sub intervals over the domain [−1, 1]

D = the trapezoidal Riemann sum using four equal sub intervals over the domain [−1, 1]

Find 8(A+B + C +D).
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QUESTION 5

Assume that the range of arccos (θ) is limited to [0, π], and that the range of arctan (θ) is limited to [−π
2
,
π

2
].

Let:

A = lim
x→∞

arccos

(
1

x

)
+ lim
x→∞

arctan(x)

B = lim
x→∞

4x3 + 5x2 − 5x5 + 12x+ 2

10x5 + 3x3 − 4x+ 3

C = lim
x→∞

√
x2 + 12x+ 5− (x+ 2)

2

D = lim
x→3

x− 3
√
x−
√

3

Find ABCD2.
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QUESTION 6

Let:

A =

∫ 2

1

x
√
x− 1 dx

B =

∫ √7+1

1

1

x2 − 2x+ 8
dx

C =

∫ 1

0

e
√
x dx

D =

∫ 2

−2

1√
2x+ 5

dx

Find
√

7ABCD.
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QUESTION 7

A ladder of length 10 m lies against a wall, so that it slides horizontally away from the wall at a rate of 5 m/s.

Let:

A = the speed that the top of the ladder slides down the wall, when the bottom of the

ladder is 3 m from the wall (Keep in mind that speed must be nonnegative.)

Water is poured into an inverted cone (that is the base is at the top) with a height of 8 m and radius of 10 m at a rate
of 10 m3/s. However, the water also drips out of the tip of the cone at a rate of 3 m3/s.

Let:

B = the instantaneous rate of change of the height of the water in the cone, when the height is 3 m

Find
1

AB
.
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QUESTION 8

Let:

A = f

(
π

3

)
given that f ′(x) = sec(x)(sec(x) + tan(x)) and f

(
π

4

)
= −1

B = lim
n→∞

1

n
(

√
1

n
+

√
2

n
+ . . .+

√
n

n
)

C = F ′(0) where F (x) =

∫ x

0

(4− t2)et
3

dt

D = g′(1) where g(x) =
x2 + 2

x3 + 4

Find AB +
C

D
.
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QUESTION 9

Let:

A = the value of x that satisfies Rolle’s Theorem for f(x) = x2 + 4x+ 5 on the interval [−4,−1]

B = the value of x that satisfies the Mean Value Theorem for derivatives for g(x) = x2 − 2x+ 12 on the interval [−2, 6]

C = the average value of h(x) = x3 + 8x on the interval [2, 4].

Using Newton’s method, find the third approximation, x3 = D, of the root for y = x3 + 2x− 4, given that x1 = 1. Round
your answer to the nearest tenth.

Find A+B + C + 10D.
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QUESTION 10

A particle follows the path modeled by the polar function r, where r = 3− 4 cos (θ) + 2 sin(θ).

Let:

A =
dx

dθ
at θ =

π

6

B =
dy

dθ
at θ =

π

2

C = the slope of the tangent line to the curve at θ =
π

4

Find ABC.
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QUESTION 11

Let:

A = the volume of the solid formed by rotating the region bounded by y = 2x3, x = 0, x = 2, and y = 0 about y = 0

B = the volume of the solid formed by rotating the region bounded by y = −x2 + 3x− 2 and y = 0 about x = 0

C = the volume of a solid given that its base is the region bounded by 4x2 + 25y2 = 100 with cross sections perpendicular

to the x−axis that are squares with sides on the base

D = the volume of a solid given that its base is the region bounded by 4x2 + 25y2 = 100 with cross sections perpendicular

to the x−axis that are isosceles right triangles with hypotenuses on the base

Find
7A

π
+

2B

π
+ 3C + 3D.
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QUESTION 12

Each of the following statements have point values assigned to them, indicated by the number within the parentheses.
Starting with 0 points, add the point values of all the true statements, and subtract the point values of the false statements.

(3) If f(x) is continuous on a certain interval, then f(x) is always differentiable on that interval.

(2) The Chain Rule states that
d

dx
f(g(x)) = f ′(g(x))g′(x).

(4)

∫
dx

x lnx
= ln | lnx|

(−6) Given that f is a differentiable function over all x, has a critical value at x = 2, and is
concave down on the interval (−1, 3), then f has a local minimum at x = 2.

(1) lim
x→∞

[f(x) + g(x)] = lim
x→∞

f(x) + lim
x→∞

g(x)

What is the final number of points?
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QUESTION 13

Let f(x) = 2x3 − 18x2 + 50x− 6. Let A and B be equal to the values of x for which the tangent line to f(x) is parallel
to y = 2x+ 1.

Suppose that f(x+ h)− f(x) = hx2 + 3hx+ 5h2x+ h2 − 3h2. f ′(x) can be written as CxD + Ex.

Find A+B + C +D + E.
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QUESTION 14

The position of a Nexus is given by the parametric equations x(t) = t4 + 3t− 5 and y(t) = 3t2 − 4t.

Let:

A = the time, t, when the Nexus’ horizontal acceleration is changing at twice that of its vertical acceleration

B = the slope of the equation of a rocket’s path at t = 5, if the rocket’s path is normal to the Nexus’ path at that instant

C = the distance the Nexus travels vertically from t = 5 to t = 7

D = the average horizontal speed of the Nexus from t = 2 to t = 4

Find A+ 26B + C +D.
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